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double-diffusive convection from a line source in a porous 
medium, in agreement with the findings in ref. [2] for natural 
convection driven by temperature gradients alone. 

Due to the prohibitive complexity of the algebraic 
calculations, higher-order solutions in Ra were impossible to 
obtain. 

4. THE PRESENCE OF A 
VERTICAL INSULATED WALL IN 
THE VICINITY OF THE SOURCE 

Based on the previous results it is possible to shed light on 
the effect ofthe presence of a vertical insulated wall on the flow 
field induced by the line source. Assume that the insulated 
vertical wall constitutes the ye-axis of an (x,-y,) Cartesian 
coordinate system and that the line source is located at x* = d, 
y, = 0. This arrangement is equivalent to an arrangement 
consisting of two line sources positioned at y, = 0, x* = + d, 
with the vertical wall removed [2]. The zeroth-order solution 
corresponds to the case ofno fluid motion and it is reported in 
ref. [9]. Hence, it is not repeated here for brevity. As explained 
in ref. [Z], due to the linearity of the momentum equation the 
solution for *I is simply the superposition of solutions for line 
sources at x = k 1, y = 0. In this part of the study d was used as 
the reference length for the non-dimensionalization. The final 
expression for *I reads 

where 

~1 = z (S+ +s-) (16) 

S (x*1Y+y2 1 4r -1 I 
x+1 m -_ 
2+ s 

exp(-5) 
pd5 

1(x* $+Y*lw r 

_B2(xc1)z+Yz _l 

45 1 > 
B(x&l) m 

25”2 s 
(17) 

B2[(X*l)‘+y2]/4t 

Inl. J. Heal Mass Tran.vfer. Vol. 29, No. 3, pp. 495499, 1986 0017~9310/8653.00+0.00 
Printed in Great Britain 0 1986 Pergamon Press Ltd. 

The first-order equations for c1 and 7F~ are non-linear, 
therefore, it is not possible to obtain c1 and TI by 
superposition. The streamline pattern $ J( 1 -A) = const for 
r = 1, B = 1 was identical to the streamiine pattern in ref. 
[2] where the concentration-gradient-induced buoyancy 
was neglected (A = 0). Basically, the presence of the wall 
flattens the streamlines in the wall vicinity. For an illustration 
of this effect ref. [Z] is recommended. 
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1. INTRODUCTION 

A LARGE number of technically important problems are 
classified as moving boundary. Heat transfer problems with a 
phase change, litospheric movement according to plate 
tectonics, gas-solid reactions occurring in a moving reaction 
zone are all of the moving boundary type. For various kinds of 
such problems there are solutions available Cl]. For the case 
that the thermal conductivity varies linearly with temperature 
Cho and Sunderland [Z] presented an exact solution; Voller 
and Cross [3] have investigated the same problem in two 

dimensions. Cheung et al [4] presented numerical solutions 
for a finite slab with internal heat generation. 

Analytical solutions, although very convenient, can only be 
applied to very specific cases. In situations where physical 
properties depend on system variables the analytical solutions 
are impossible. Problems with various complexities and 
boundary conditions can be analyzed numerically using 
superfast computers. 

An approximation commonly adopted in numerical 
approach is that the phase boundary movement and also the 
changes in transient quantities occur at a constant rate in a 
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NOMENCLATURE 

a, b proportionality constants Greek symbols 
C specific heat capacity [J kg- ’ K - ‘1 c( thermal di5usivity [mZ s- ‘1 
d, h spatial step size in liquid and solid, respectively, P density [kg me31 

Cm1 6 step size in time [s]. 
H latent heat of solidification [J kg-‘] 
i position integer ; y/h for solid, M + (L - Y)/d for 

liquid 
k thermal conductivity [W m-l K-‘1 
m, n grid points in the solid and total number, 

respectively 
t time [s] 
IT; X old and new temperatures, respectively c”C] 
Y thickness of solidified layer [m] 
Y space co-ordinate. 

Subscripts 
i, m, n grid point i, interface and insulated 

boundary, respectively 
1, s liquid and solid, respectively 
0 initial or previous 
W wall. 

given time step. In order to calculate the values of the variables 
at a new time step an equation of the following form is 
generally used 

substituted by others are given below. 

(new value) = (old value) + (rate of change) x (time step). (1) 

The rate of change is taken either at the previous or the next 
time node. The approximation holds if the time step is 
sufficiently small. However this requires more computer time 
and may cause instabilities. Since rate of change various from 
time = t to t+8, it should be some average rate containing 
explicit and implicit terms. In this paper weintend to deal with 
the problems using averaged expressions and also introducing 
a coordinate system with a fixed number of grid points in both 
phases. This system accommodates sudden changes in 
variables, thus allowing smaller spatial steps when changes are 
fast and larger steps when changes are slow. In addition, a 
changing time step is used, making it easier to follow crucial 
changes very closely. Otherwise a sudden change would be 
considered to last for a finite time segment S, whereas it lasts 
only for lim 6 + 0. 

T = To, Y=O, t<O (54 

T, = G, y=o W 

T, = T, = T,, y=Y (5c) 

k,r =O, 
ay y=L 

y = L. 

3. SOLUTION TECHNIQUE 

The solid and liquid regions aredivided into fixed number of 
grid points. Thus, a coordinate system is adopted where each 
grid point moves with a different amount, the ends being fixed. 
The partial time derivative of temperature can be written in 
terms of a gradient which is moving at a velocity of dy/dt as 

A physical problem is chosen and solved by explicit and Let i = 1 represent the grid point at the cooling surface; 
average rates. Solution with average rate is found to be far i = m, interface; i = n the insulated surface. Let Xi be the 
more stable allowing much greater time steps than explicit temperature at time = t+S. Using the Crank-Nicolson 
methods. The problem is described below. technique various derivatives can be written as follows : 

2. PHYSICAL PROBLEM AND 
FORMULATION 

Consider one-dimensional solidification of molten steel. 
Liquid occupies the space 0 < y < L with a temperature T,, 
initially with T, > T, where T, is the solidification 
temperature; the liquid is insulated at one end. At time = 0 
and Y = 0 the temperature is set to a low value T, with T, 
< T,. A solid layer starts forming and the phase-change 
boundary will move. We can write the conservation of heat in 
various regions as 

solid : 0 d y =Z Y (2) 

liquid : Y<y<L (3) 

phase-change boundary : 

Equation (4) is written for conduction dominating convection 
in the liquid. This is true if the liquid and solid densities are 
equal. The initial and boundary conditions which can be 

Solid region : i = 2, m - I 

(8) 

’ 
(9) 

dy 

0 

(Y- Y,)(i- 1) 

dt i= (m-1)6 
(10) 

Using equations (7)-(lo), equation (2) can be written at i as 
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This can be written in a matrix form including all the grid points i = 2, m- 1 as 
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(12) 

Liquid region : i = m + 1, n (Y-Y,)(n-i) a,& 
The derivatives in equations (3) and (6) are written in a 

- 

manner similar to that in the solid region. The rate of [ 4&--y) +s xi+l 1 
movement of the grid point i in the liquid region which 
corresponds to equation (10) can be written as 

= T:+ (Y- U(n-i) (T 
’ 4(L-Y,) 

_T_ 
1+1 $1 

) 

dy 

0 X, 
=(Y-Ys)S. (13) 

Then equation (3) becomes for i = m+ 1, n 
+$+,-21;+T_,). (14) 

0 

(Y- Y,)(n-i) The set of equations obtained from equation (14) can be 
4(L- Y) written in matrix form as 

i 

T.fS(K_,-_P 
0 

(15) 
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In order to solve equations (12) and (15) we need to obtain Y 
from equation (4) as 

Y= Yo+* k, -+- [( T IfIf -Tm X,+,-T, 
37,H do d 

Tm-X,-I 
~ 

h I (16) 

Since equation (16) involves the new temperatures we need to 
solve the system of equations (12), (15) and (16) using an 
iterative technique. In order to start the iteration an initial 
value of Y is assumed and the quantities d and h are calculated. 
Then equations (12) and (15) are solved. Using the new 
temperatures an improved Y is obtained through equation 
(16); this is repeated until the improvement in Y is very small. 
Also a variable time step 6 = const h2/2u, is used where const is 
a parameter to monitor the effect of time step on the solution. 
Therefore, for a given conet, 6 is a function of time. 

3. RESULTS AND DISCUSSION 

The computer solutions are obtained through the implicit 
method [equations (12), (15) and (16)] and an explicit method 
for various values of const. The following data are used : T, = 
90°C; T, = 1480°C To = 2200°C; pI, p, = 7800 kg m-a; 
C,,C,=420Jkg-‘K-‘;k,=34Wm-‘K-‘;k,=17W 
m-‘K-‘;H = -250OOOJkg-‘;L= lm,n = 20.Inorderto 
find a basis for comparison the problem is solved by both 
methods using very small time steps. Both methods produce 
similar results with no appreciable difference. The T vs y plots 
are compared with approximate analytical solutions [S] and 
themaximum differenceisfound to be 1.5%. Error analyses are 
based on these solutions. 

In problems involving the evaluation of various physical 
parameters depending on system variables an important 
means of comparison is the number of iterations necessary for 
a certain amount of solidification. The method requiring fewer 
iterations involving a certain error will use less time when 
complex evaluations have to be made. Figure 1 shows the plot 
of the number of iterations vs CPU time required. Both 
methods are stable beyond upper limits of iteration. Explicit 
method becomes unstable below about 4400 iterations (11.8 s), 
whereas implicit method is unstable below 100 iterations 
(1.8 s). Therefore, implicit method is superior as evidenced 
by the iteration ratio of 1: 5. 
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FIG. 1. CPU time vs number of iterations. 
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FIG. 2. Percentage maximum global error in termperature vs 
CPU time. 

Figure 2 shows maximum error in temperature vs CPU for 
bothmethods.In theordinateATis themaximumglobalerror 
in temperature of solid or liquid. Obviously at all levels of CPU 
implicit method produces smaller errors, that is, for any given 
error CPU required is smaller for the implicit method. Figure 3 
shows percentage error in the time necessary to solidify 80% of 
liquid vs CPU. For any given error CPU is smaller in implicit 
method. 
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FIG. 3. Error percentage of the time for 80% solidification vs 
CPU time. 
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1. INTRODUCTION 

UNSTEADY thermal convection of an initially isothermal fluid 
in a closed cavity has lately received considerable attention 
in the literature (see, e.g. [l-5]). Most of these papers studied 
the transient behavior of a Boussinesq fluid as a result of 
impulsively imposed thermal forcings on the boundaries ofthe 
cavity. As in common technological applications, we are 
interested in situations in which the overall Rayleigh number, 
Ra = agATh3/vK, is sufficiently large to render a boundary- 
layer-type character. Here, a is the coefficient of volumetric 
expansion, g the gravity, AT the characteristic temperature 
difference, h the height of the cavity, v the kinematic viscosity, 
and K the thermal diusivity. We are restricted to the cases for 
which the final state is ofa gravitationally stable configuration. 
The Prandtl number of the fluid, Pr = V/K, is taken to be O(1). 
The aspect ratio of the cavity is O(1). 

The requirement of having perfectly conducting walls poses 
a severe difficulty for laboratory apparatus. In order to 
understand more realistic systems, it is useful to inquire into 
the effect of finitely conducting boundaries on the front 
propagation. Recently, ref. [7] proposed a highly idealized 
model which provides a lowest-order description for the front 
propagation in a cylinder whose vertical sidewall has a finite 
thermal conductivity. The transient process is initiated by a 
uniform, impulsive increase in the ambient temperature. 
Reference [7] formulated the boundary-layer transport to 
determine the position of the propagating front that separates 
the isothermal and stratified regions. Most significantly, ref. 
[7] derived the characteristic time for the front as functions of 
the externally-controlled physical parameters. 

As was succinctly expounded in ref. Cl], the dominant 
mechanism is the pumping by the buoyant boundary layers on 
the vertical walls of the container; this induces convective 
circulations in the inviscid core. Therefore, the decisive 
thermal forcing is that on the vertical walls. Consequently, 
the temperature adjustment in the core is accomplished 
principally by the convective activities rather than by 
diffusion. 

In this note, by conducting numerical experiments we shall 
verify the front propagation predicted by Rahm’s model [7]. 
Numerical solutions to the time-dependent Navier-Stokes 
equations were acquired. The theoretical predictions will be 
compared against the numerical results using different values 
for the sidewall thermal conductance and for Ra. 

2. THE THEORETICAL MODEL 

One salient feature of the temperature evolution is the 
presenceoftheverticallypropagatingtemperaturefront [4,6]. 
Reference [4] examined an exemplary case when a uniform 
temperaturegradient AT/h is abruptly applied to the sidewall 
of a vertically-mounted cylinder (radius a, height h). During 
the transient phase, the temperature field in the core is divided 
into two regions by a horizontal front. Ahead of the front, the 
fluid remains non-stratified, retaining the uniform tempera- 
ture of the initial state; behind the front, the fluid is stratified. 
Reference [4] showed that the characteristic time for the front 
to traverse the height of the cylinder is given by the convective 
time scale Ra114N; I, NI being the Brunt-Vlis%i frequency in 
the final state, Nf = (agAT/h) “’ It was also found that the . 
propagation speed of the front is fairly constant over much of 
the cylinder depth. 

In this section, the lowest-order expressions for the front 
propagation will be briefly described. For full details, the 
reader is referred to the original paper [7]. 

Consider a quiescent incompressible fluid contained in a 
closed straight cylinder, with insulated horizontal endwalls 
at z = 0 and z = h, respectively. The radial and vertical 
coordinates are denoted by r and z. The initial state is in 
thermal equilibrium at uniform temperature TO everywhere. 
At t = 0, the temperature of the environmeni is siddenly 
raised to T. > T,, and it is maintained so thereafter. The - “. 
vertical sidewall is finitely conducting, and the Newtonian 
heat flux condition is adopted C&S] : 

g = S(T.- T) at r = a. 

To observe experimentally the front propagation described 
by ref. [4],it is necessary that the sidewall be made of a material 

Here, the thermal conductance of the sidewall is represented 

of extremely high thermal conductivity. This will ensure that 
by S. Physically, S = k&d, k, and k being the thermal 

the fluid temperature at the inner surface of the wall is 
conductivity of the sidewall material and of the fluid, 

equalized to the temperature at the outer surface of the wall. 
respectively, and d the thickness of the sidewall. As an example 

The outside temperature T, is controlled to give a desired 
for typical laboratory situations, S is approx. 1.5 cm-’ if the 

thermal forcing for the particular experiment. 
working fluid is water and the sidewall is made of glass 1 cm 
thick [S]. 


